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Abstract—Recent advancements have enabled human-robot
collaboration through physical assistance and verbal guidance.
However, limitations persist in coordinating robots’ physical
motions and speech in response to real-time changes in human
behavior during collaborative contact tasks. We first derive
principles from analyzing physical therapists’ movements and
speech during patient exercises. These principles are translated
into control objectives to: 1) guide users through trajectories, 2)
control motion and speech pace to align completion times with
varying user cooperation, and 3) dynamically paraphrase speech
along the trajectory. We then propose a Language Controller
that synchronizes motion and speech, modulating both based on
user cooperation. Experiments with 12 users show the Language
Controller successfully aligns motion and speech compared to
baselines. This provides a framework for fluent human-robot
collaboration. The implementation of the Language Controller
framework is openly available as open source code to enable
extension, verification, and reuse of the method

I. INTENDED DEMONSTRATION

The demonstration will involve having audience volun-
teers sit beside a UR robot [[1]] equipped with the Language
Controller. The robot will physically guide the volunteer’s
hand along a predefined trajectory on the table, representing
a therapeutic exercise motion. Concurrently, the robot will
provide verbal instructions and guidance to the volunteer
through a speaker, using pre-recorded audio clips. As the robot
moves the volunteer’s hand, the volunteer will be encouraged
to arbitrarily vary the amount of resistance they apply against
the motion. The Language Controller will react in real-time to
modulate both the pace of physical motion and the speech rate
to maximize alignment. Audience members will clearly ob-
serve the robot slowing and speeding up the motion and audio
in correlation with changes in applied resistance. Additionally,
the phrase content and length of the speech instructions
will adaptively change as the pace varies, demonstrating the
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controller’s paraphrasing capabilities. Audience members will
see that slower motions induce the use of longer instruction
phrases, while faster motions result in shorter phrases.

II. INTRODUCTION

Robots have been enabled to collaborate with humans by
providing physical assistance as well as verbal guidance during
collaborative tasks. Research on robots providing physical
assistance has shown robots assisting with heavy lifting and
materials handling in warehouses and factories [2f; handling
payloads, reducing physical strain on human workers [3]]; and
helping turn and lift patients, freeing up human nurses for
other critical care tasks [4]. In addition to providing physical
assistance, robots have also been used to provide verbal in-
structions and dialog interaction in human-robot collaboration
[I51, [6]]. Using natural language capabilities, robots understand
commands, ask clarifying questions, and provide guidance to
human partners [/]. Research suggests that language-enabled
robots lead to higher perceived collaboration quality compared
to silent robot partners [§].

Human-robot collaboration remains limited by the lack of
natural coordination between physical interactions and verbal
communication. Simply combining robot’s motions and its
speech in parallel cannot achieve natural, fluent coordination.
An open challenge remains to develop adaptive control frame-
works that closely coordinate a robot’s physical motions and
speech utterances, dynamically modulating both based on real-
time changes in human behavior.

We propose a Language Controller that synchronizes the
robot’s motion and speech under changing user cooperation by
aligning the duration of the speech to that of the motion. Like
human demonstrations, longer motion induces slower, longer
speech and vice versa. The controller paraphrases speech
utterances along the trajectory to match changing cooperation
and speed. It does so by varying admittance parameters, audio
pace, and adaptive paraphrasing. The controller is inspired by
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principles derived from analysis of human-human physical
interactions, specifically from an observational study of a
physical therapist collaborating with a patient during therapeu-
tic exercises at a rehabilitation center. From observations of
the therapist’s physical and verbal guidance, we identify core
principles and translate them into formal control objectives for
the controller (details in section [[V).
We make the following contributions:

1) Formalize core principles to derive control objectives
for natural human-robot collaboration — adaptive pac-
ing, aligned speech-motion timing, correlating speech
complexity with motion speed — from observations of
human-human physical therapy interactions;

2) Language Robot Controller from the derived control
objectives in order to align the robot motion with the
verbal speech in the human-robot interaction;

3) Extensive human experiments that validate the controller
and demonstrate its ability to align the pace of the robot
motion with its speech.

IIT. RELATED WORK

A. Language Grounding for Robot Instructions

Prior work has focused on grounding natural language
instructions to enable robots to follow commands, including
techniques for mapping instructions to internal representations
and actions [9]-[11]. Other efforts have targeted collaborative
grounding of language between humans and robots for situated
dialog and interactions [[12]], [[13]. While enabling planning and
collaboration, integrating robot physical motions and speech
grounded in real-time human responses still remains an open
problem. Our work aims to address this gap.

B. Variable Impedance and Admittance Control

Research has explored variable impedance and admittance
control for safer and adaptive human-robot interaction, includ-
ing dynamic modulation based on cooperation [14]], adaptive
admittance using EEG feedback [15]], and online impedance
variation for performance/safety trade-offs [[16]. We incorpo-
rate admittance methods for compliant motion, but extend
standard admittance frameworks by explicitly coupling the
modulation of control parameters to the speech state. This ties
motion control to verbal communication.

C. Language and Motion Integration

Recent works have combined language understanding with
robotic planning and control, including mapping commands
to executable specifications [[17], [18] and leveraging implicit
information to improve plan execution [19], [20]. However,
physical motions of the robot and concurrent speech have
not been integrated based on mutual understanding and real-
time bidirectional communication. Our Language Controller
addresses this by developing a control framework that coordi-
nates motions and utterances grounded in human responses.

Fig. 1: Physical therapist is seen performing ’shoulder external
rotation’ therapy on to the patient with varying levels of
physical resistance. The physical motions and speech data was
recorded across different sessions

IV. PRINCIPLES AND CONTROL OBJECTIVES

Through the observational study of therapist-patient ex-
ercises at Spaulding Rehabilitation Hospital (Fig. [I), we
identified the following core principles:

o The therapist planned the trajectories for each session,
demonstrating the path before starting an exercise;

o The therapist adapted the pace of motions based on
patient responses. When the patient struggled, she slowed
down and gently guided them along the trajectorys;

o The therapist aligned her speech with physical actions.
She began verbal guidance at the start of motions and
finished speaking around the end;

o Her speech rate and sentence length correlated with her
physical motion speed - slower motions had slower,
longer speech; faster motions had faster, shorter speech.

We derived the following formal control objectives from
these principles. The robot must:

1) Guide the user through a predefined trajectory while
modulating its velocity in response to user cooperation.
High cooperation (low resistance) must lead to faster
motion and Low cooperation (high resistance) must lead
to slower motion;

2) Control the pace of its speech to maximize the align-
ment with its motion while adapting to varying user
cooperation. We formalize alignment as a monotonic
relationship between speech and motion duration (see
V-C).

3) Paraphrase (choice of words) its speech dynamically
along the trajectory, adapting to changing user cooper-
ation. It must use shorter sentences under faster motion
and longer sentences under slower motion.

Building upon the outlined control objectives, we formalize
the Language Controller.

2Detailed therapy sessions videos can be seen at https://language-playback-
robot-controller.github.io/therapy-sessions/
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Fig. 2: Control scheme of Language Controller. External force F. (from user) and virtual force Fyi, (based on position to
guide user through a predefined trajectory) are passed to the virtual dynamics Y, to generate reference velocity vs for velocity
controller C'. C outputs a force that, together with Fiy, acts on robot dynamics Y;.. The resulting motion is given by &. Motion

time-to-completion estimator .S uses & to estimate the time-to-completion (ETC) of the trajectory ta.

Speech module G reports

an ETC of the speech, t,, and cooperation model Y, computes cooperation ¢ from Fry. tr, ta and ¢ are fed to audio-motion
aligner A to update Physical Pace p and Audio Pace a. Physical Pace p changes the pace of the robot’s motion by varying
Y,’s parameters. Audio Pace a changes the pace of audio through a phase vocoder in G.

V. LANGUAGE CONTROLLER
A. Overview

Language Controller (Fig. [2) employs variable admittance
control for robot motion and modulates the pace of motion
and speech to maximize the alignment. The controller is
designed to align the motion of the robot with its speech. It
does so by updating “Physical Pace” and “Audio Pace” from
estimated time-to-completions for both the robot’s trajectory
and its speech. The controller dynamically updates the paces
based on real-time user response. Furthermore, the controller
incorporates adaptive paraphrasing to modulate the speech
content. It traverses a phrase graph representation to select
appropriate wording and phrase length that matches the ideal
duration of speech corresponding to the expected duration of
motion.

B. Admittance Model

Admittance and Impedance Control are the two primary
control schemes used in human-robot interactions [21], [22]].
Humans actively control their limbs and resist unexpected
movements, which positions humans as an impedance, neces-
sitating robots to be treated as an admittance. We thus use
Admittance Control, which converts external force Fiy into
desired velocity v via a virtual dynamics model:

Mores + Dotrer = Foxt- (H

where vgr is the desired velocity. To lead the user through a
predefined trajectory 7', we extend the virtual dynamics model
above with a virtual force Fijrual,

Mores + Dovrer = Fext + Flirtual- ()

Fliral 18 dependent on the end effector position = and its
closest point on the trajectory (x4), defined as follows,

xq = T(d), where d = argming,<;[|T(d) —z|,  (3)

where we see the trajectory T as a directed curve [0,1] — S
where S is the state space. Fijya consists of two parts:

Fvirtual — K(l'd - QC) + ||Fpr0pell||b7 (4)
FE“ide Fpmpell
T(d') -
where b = lim T(d) = 24 (5

d'—d+ ||T(d/) — l‘dH
where Fgyiqe leads the user back on track if they deviate and
Fhropent leads the user to complete the trajectory. This achieves
our first objective that our robot should lead the user through
the trajectory. In frequency domain, can be expressed as

Vet = A - (Fext + Fvirlual) where A = m- (6)
We elaborate in how to vary A with Physical Pace p to
tune the behavior of this admittance model.
The virtual admittance model produces v, that is fed to the
velocity controller C', which produces a driving force Fyive
with actuators. The equation of motion of our robot is:

MiobotZ = Fext + Farive = Fexe + C(Uref - ,T) )

C. Defining Audio-motion Alignment

As was stated in we observed from the demonstrative
therapy sessions that the therapist began verbal guidance at
the start of the motions and finished speaking around the end.
Consequently, longer and slower motion is accompanied by



longer and slower speech and vice versa. Formally, the ideal
duration of the speech, t,, is an increasing function of the
duration of the motion, ¢,

to = f(t,), where f'(-) > 0. ®)

We refer to the model f that correlates the two durations as
the alignment model. f can vary between different contexts.
In this demonstration, since we observed from the therapy
videos that the speech guidance is approximately as long as the
motion itself, we set f as the identity function for simplicity
and defer formulations of more accurate fs to future research.

D. Parameters

Aligning the robot’s motion and its speech requires us to
be able to control their pace. In our controller, this is done by
varying the Audio Pace a and the Physical Pace p.

Audio Pace (a) is the pace at which the robot’s speech
is played. E.g., a = 1.2 means the audio is played 20%
faster than normal and ¢ = 0.8 means playing 20% slower.
We pass a to a Phase Vocoder 23] which time-scales the
prerecorded speech audio with Short-time Fourier Transform.
We empirically constrain a € (0.6,1.4) to avoid incongruity
arising from over-stretching or shrinking of the speech audio.

Physical Pace (p) is a variable in our admittance controller.
It can be thought of as a “speed knob” with which we vary
the controller. We design p to achieve the following effect:
assuming constant Fy, p = 1.2 should cause our controller to
complete a trajectory in 20% less time than a fixed admittance
controller following (2) and likewise p = 0.8 should cause it
to run 20% slower. We empirically constrain p € (0.6, 1.4)
so the admittance parameters do not deviate too much from
their base values. Physical Pace (p) must not be confused
with end effector velocity. The role of p is not to directly
modulate velocity, but to adjust the admittance parameters.
This ensures that the controller operates within the safety
and compliance boundaries set by the admittance control
framework. Directly multiplying the end effector velocity by
p could lead to unsafe conditions, as it would bypass these
regulatory mechanisms. Therefore, p should be understood as
a rate constant that modifies the admittance parameters to
indirectly influence end effector velocity, maintaining safety
and compliance even under varying external forces. The formal
definition of Physical Pace p is in

Estimated time-to-complete (ETC) for audio and speech
We define alignment of motion and speech by relating the
duration of the two. Therefore, to modulate the paces, our
controller naturally needs to continuously estimate these du-
rations, or, since the start time is known, when the motion
and speech will end. Concretely, our controller computes the
ETC for audio (¢,) and motion (¢,). #, and ¢, are computed

under base pace a = p = 1E1
Computing Paces p and a We compute the ideal paces, p*

and a*, from the following optimization:
e 2 2 fa £$
minimize (pfpnatural) +(a*anatural) ) S.t. E = f(;)7 (9)

where we set Prawural = Gnatural = 1. T /p and ta /a are the ETC
for motion and audio considering the current pace, connected
with the alignment model f. When f is the identity function,
the solution to () is

s+1 ., S2+s

241 8241

*

where s = (10)

> >
)

We further update p and a following the equation below:

a = kq(a* —a).

(11

This control equation makes both paces converge exponen-
tially to their optimal valueﬂ
User Cooperation We define Cooperation (0 < ¢ < 1) as

¢
—r | Fext]

c(t):lf/ ol T dr
0 [ max

where ||F||max is the maximum magnitude of resisting force
and « is the decay factor. In practice, we apply a deadband
filter to Fyy, first to filter out sensor noises and friction.

We then extend to

a=kq(a* —a) —ke(1—c).

p=ky(p* —p),

(12)

p=Fkp(p* —p), 13)

This allows our controller to slow down the speech when the
user does not cooperate (high resistance) and resume ideal
speech pace when the user fully cooperates (low resistance).
(13)) achieves our second objective that the robot’s motion and
audio must be aligned under varying user cooperation.

E. Varying Admittance Model with Physical Pace p

We now give a formal definition of the Physical Pace p
and integrate it into the virtual dynamics defined in (2). Let
vie(t) be the reference velocity generated by an admittance
controller per (Z) (without p), and let ver(t) be the reference
velocity from our controller (with pace p). Assuming fixed
(Fext + Fvirtual)s we want

'Uref(t) = pvr*ef(pt) (14)

which, after integrating both sides, implies that a controller
with pace p would reach a reference position in 1/p the time of
a controller without p. E.g., when p = 2, a controller without
p would take twice amount the time to reach the same position

3{4 is computed as the sum of audio length on a path constructed by
repeated use of (ZI) from the current vertex in the phrasing graph (minus the
duration played for the current audio ). iy is computed assuming Fexe = 0
(i.e., fully cooperative user) with simulation of (7) at 500Hz.

4Both paces are defined relative to a base pace of 1. a = 1 means the
audio is played at the recorded rate (free of distortions); p = 1 means the
trajectory is being run with the default / intended admittance parameters. We
consider 1 to be the most natural/ideal pace.

SWe do not directly set p = p* and a = a*, which could lead to abrupt
change of pace if p* and a* deviate from current values too much.



as a controller with p. More generally, pace p varies with time.
Let p; be the pace at time ¢, we want

Vre(t) = prvjeg(®), where & = fot prdT. (15)
Here time ® generalizes pt for time-varying p in (I4). The
assumption of fixed (Fix + Fyirnwal) in the definition is critical:
p generally is not a scale factor to the end effector velocity but
instead modulates the admittance parameters. This approach
is safer as p effects the velocity only indirectly through the
admittance model, which ensures the safety and compliance
of our controller under varying forces.

We achieve (15) with the variable admittance model:

Uref = A(pt) . (Fext + Fvirtual)v

1
where A =
(pf) Z%MOS-FP%DO—

(16)

a7

Proof: Differentiate & multiply both sides by My,
Moore(t) = p} Moyeg(P) + pe Movger(®). (18)
Expanding Movi:(t) by @),
= p? (Fext + Fuirtual) —

)/pe by (13),

MOi)ref(t) Dt Dovref(cb) +ptMOUrt:f((I))'

Substitute v5(P) = vrer(t

Motrer(t) = D} (Fest + Frirua) — (p:Do — B Mo)ver. (19
whose simplification then leads to (17). [ ]

E. Passivity Guarantees

We show that our controller defined in is passive. A
passive system is a system that is constrained in such a way
that it does not inject excessive energy or instability into the
interaction [24]]. Formally, a system is passive w.r.t. an input-
output pair (u(t),y(t)) if and only if there exists a positive
definite storage function V' over the system such that:

V(t)—V(0) < /Otu(t)T-y(t)dt vt >0 (20)

Theorem 1: Consider a controller of the form outlined in
(I7) operating with linear trajectory T. If K is orthogonal
and positive definite, Dy is positive definite, and p is lower-
bounded by a positive value, then the system is passive with
respect to the force-velocity (Fey, Vrf) input-output pair.

(Proof provided in the Supplementary.)

Results for all the users are available in our online appendix |https:
//language- playback-robot-controller.github.io/user-sessions/.

/Step-like patterns for ¢, around ¢ = 5 and t = 7 is due to minor
imperfection in our audio code when transitioning between different phrases
at the time of the study. The steps should be lines of the same slope as the
immediately preceding line and don’t affect the correctness of our analysis.

Move your
arm

Retract your
arm

Fig. 3: Example phrasing graph for our experiments where
users were asked to retract their arms. Paths ending at red
nodes represent different phrasings of the instruction, e.g., “I
want you to retract your arm” (short) or “I want you to move
your arm back towards your body.” (long)

F. Adaptively Paraphrasing the Robot Speech

To enable the robot to dynamically paraphrase its speech
so the speech length matches that of the robot’s motion (our
third objective), we represent of speech as a phrasing graph.
A phrasing graph is a Directed Acyclic Graph (DAG) where
vertices denote sequences of words or phrases and a directed
edge from vertex u to v denotes that the v’s phrase could
follow w’s in speech. Phrasing graph captures the various
alternative ways to express similar meanings (see Fig. [3).

When the controller finishes saying the phrase on a vertex,
it chooses the next vertex/phrase based on how long it expects
the trajectory to last. Formally, it does so by choosing a next
vertex u from the graph, such that:

o fmin(u) + fimax (u)

u = argmin |t —
next node u 2

(2D
where £, is the expected time-to-completion (ETC) of the tra-
jectory - tmin(U), tmax (1) are the minimum & maximum
time-to-completion of speeches starting at vertex uﬁ We use
the average of tmin(u) and tmax(u) as an efficient heuristic to
increase the freedom of choices in subsequent vertex-selection
steps: assuming the length of the speech starting at a node
follows a balanced distribution, choosing the node with the
closest min-max average to 7, reserves the flexibility for the
algorithm rephrase in the future no matter in which direction
t, changes by then.

We remark that (a) (ZI)) causes the controller to select longer
paraphrases when the user resists more. Higher resistance
slows the motion, increasing trajectory time #,. (b) the graph
traversal does not depend on @ or p to avoid compound
effects’]

8tmin(u) and tmax(u) are pre-computed by storing at each vertex the
expected time to say its phrase, and iterating in reverse topological order.
°If we consider p here, i.e., we choose next vertex v that minimizes |5 /p—
.| instead of |z — .. .|, a brief episode of low p induces a longer speech
Wthh requires even lower p to align — a vicious cycle.
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Fig. 4: A user participant is seen interacting with the URS robot on a desired trajectory, which was inspired by the therapy
session (“shoulder external rotation”) and predefined in our Controllerﬂ The reference trajectory for this motion was predefined.
As evident in the figure, the user sits beside the robot and places their hand on the table surface, while the robot end-effector
guides the user’s arm through the planned trajectory.
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Fig. 5: States and metrics of our controller from a single user session through a predefined intended trajectory. At ¢t = 3
(red shaded timespan), cooperation dropped, causing end effector speed to decrease. This shows that our motion controller is
compliant. Audio pace also dropped and returned back up at ¢ = 4, which shows our controller adapts the pace of the robot’s
speech to changing user cooperation. Throughout the session, our controller kept the estimated time-to-completion (ETC) of
speech and trajectory close (the estimated misalignment is around 0). This demonstrates that our controller successfully aligns
the robot’s speech with its motion. Around ¢ = 7, ETC for trajectory ¢, dropped, making the controller select a shorter path
on the phrasing graph, as shown by an abrupt drop in #,. However, the temporary dip in f, was caused by inaccuracies of
estimation, so the controller reverted to its original planned next phrase shortly after. As resistance dropped around ¢ = 9, the
controller eventually paraphrased and chose the shorter path. The paraphrase shortened the ETC to less than the trajectory, so
the controller re-aligns by reducing audio pace and increasing physical pace. Overall, this demonstrates that our controller is
able to align the robot’s speech with its motion while adapting to changing user cooperation.® |Z|

Note: the step-like pattern for 7, at around ¢ = 5 and ¢ = 7 are due to a minor imperfection in our audio player when transitioning between audio fragments

of different phrases at the time of the study. The steps should be viewed as lines of the same slope as the immediate preceding line and does not affect the
correctness of our analysis.
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Fig. 6: Violin plot of the distributions of metrics for 3 controllers across all 12 user sessions. Blue bars indicate min, median,
and max of a distribution. Consistent distributions of cooperation for all controllers show that all controllers deliver similar
physical experience to the users; On this ground, LC exhibits less audio-motion misalignment (both actual and predicted) than
LC-noAR which exhibits significantly less variation in misalignment than the AC baseline. Adaptive paraphrasing allows LC
to maintain a more natural speed of speech most of the time than LC-noAR, as shown by a more concentrated peak around

the default rate of 1 in audio rate distribution. Overall, LC best aligns the robot’s speech with motion®.

VI. EXPERIMENTATION
A. User Study

The user study included 12 participants (7 males, 5 females)
with a mean age of 23 years. The study procedures and
protocol were reviewed and approved by the Institutional
Review Board (IRB Protocol #2212000845R001), ensuring we
followed ethical guidelines for human subject research. The
URS robot [1]] guided users through a predefined trajectory
demonstrated by the therapist. Users sat beside the robot,
placed their hand on the desk. The robot guided their hand
along the trajectory with speech instructions while users varied
resistance arbitrarily.

B. Control Schemes Evaluated and Compared

1) Admittance Controller with Decoupled Audio (AC):
Our baseline is a pure admittance controller with dynam-
ics of (2). The audio is a single prerecorded audio file
that starts simultaneously with the trajectory. Physical
and Audio Paces are not modulated at all.

2) Language Controller without Adaptive Paraphrasing
(LC-noAP): Our controller but without the ability to
adaptively paraphrase the speech.

3) Language Controller (LC): Our controller with adap-
tive paraphrasing by traversing a phrase graph (V-E).

C. Evaluation Metrics

1) Cooperation (c), defined in (I2), quantifies user coop-
eration. ¢ should not significantly vary between control
schemes. In particular, our controller must not induce
lower cooperation than the baseline.

2) Audio Pace (a) is the speed at which we deliver the
speech audio. An audio rate of 1.2 indicates that we are
playing the audio at 120% of its normal speed and 0.8
indicates playing at 80% of its normal speed. A pace
closer to 1 implies less distortion from audio processing
and more natural speech.

3) Physical Pace (p) is the state variable through which
we vary the admittance parameters of our controller. p

6

closer to 1 implies the robot operating closer to its most
natural admittance parameters. Always 1 for AC.

4) Actual Misalignment is defined as the difference be-
tween the audio and motion durations, adjusted with the
alignment model f. A positive value indicates the audio
is longer than what would be ideal for the duration of the
motion; A negative value indicates otherwise. A smaller
absolute value suggests better audio-motion alignment.

5) Estimated Misalignment (EM = to— f (fl)) is the real-
time estimate of Actual Misalignment (AM). A smaller
absolute value suggests better audio-motion alignment;
EM differs from AM in that EM is a time series
computed throughout the session whereas the AM is a
scalar obtained after the session ends.

Of these metrics, Actual Misalignment is a single value per
session, while the rest come in time series.

D. Analysis of Language Controller on a User Session

We analyze our controller’s behavior for one of the user ses-
sions in Fig.[5|and present a deep dive analysis. Around ¢ = 3,
cooperation dropped, slowing end effector speed. Audio pace
dropped then recovered, aligning with motion. Throughout,
estimated time to completion (ETC) of speech and trajectory
were kept close, showing speech-motion alignment. Around
t =7, a temporary inaccurate ETC drop caused paraphrasing
to a shorter phrase path, which was committed once resistance
dropped around ¢t = 9. We also observe a clear correlation
between the audio rate a and the cooperation ¢, which proves
that our controller slows down its speech to synchronize with
the slower motion of the robot as we desired.

Overall, Language Controller adapts speech pace to follow
motion changes from user cooperation variations, while para-
phrasing aligns speech ETC to trajectory ETC.

E. Comparing Controllers across User Sessions

We compare all three control schemes across all users and
present the results in Fig. [6] The level of user cooperation
was similar across controllers, with no notable differences



observed initially. This implies that all users exhibited similar
physical motion irrespective of controllers, supporting our
prior hypothesis that alignment of robot’s motion and language
can be achieved while keeping users’ physical interactions un-
changed. AC exhibited broad misalignment (-4 to 3 seconds).
Given short session length, this indicates notable lack of align-
ment. Adding pace control (LC-noAP) reduced misalignment,
and adaptive paraphrasing (LC) further improved to under 1
second. Both LC finish speech after motion. LC controllers
showed bimodal audio pace distribution - a peak around base
rate 1, another at lower end — corresponding to two behaviors:
slowing speech during high resistance to align with slower mo-
tion, and aiming for natural rate without/low resistance. LC has
more concentrated peak at 1, as adaptive paraphrasing matches
speech content length to motion, enabling natural rate delivery.
We remark that the distribution of estimated misalignment
for LC is irregular. We attribute this irregularity to adaptive
paraphrasing, where the controller often updates the estimated
time-to-completion for audio, fa, in a discrete manner owing
to the naturally discrete distributions of sentence lengths on
the phrasing graph

The experiments show that our controller met all of our
defined objectives. It guided the users through the intended
trajectory while adapting to the changing user resistance, and
it controlled the pace and content of the robot’s speech to
maximize its alignment with the robot’s motion.

VII. LIMITATIONS

We list below the limitations of our approach, which can
provide insights to future investigations:

1) We employed variable admittance controller for motion
control. But the idea generalizes to other controllers;

2) We proposed a general concept of speech-motion align-
ment where the durations of the two are linked with
a monotonic function f. For simplicity, we set f as
the identity function in this paper as it matches our
empirical observations under the particular evaluation
scenario. Further research should develop a more general
and accurate alignment model.

3) We observe that in some of the therapy videos, the
therapist varied the duration of her speech with the
insertion of pauses and filler words. Our model does not
implement this behavior, but in theory, it can be incorpo-
rated into our model by adding appropriate filler/pause
nodes in our phrase digraph.

4) For richer interactions, large language models could au-
tomatically create phrasing graphs, beyond our therapist-
recorded interactions;

5) Our controller assumes prerecorded audio phrases. An
extension is using text-to-speech to generate audio from
the phrases;

6) Formalized for physical therapy, Language Controller
principles can be extend to manufacturing, with robots
assisting in lifting, handling, and assembly; and space
exploration, helping astronauts recover from falls.

7) Using TTS model also opens up more possibilities of
speech modulation as many TTS models have config-
urable parameters such as speed and tone to control their
generation.

VIII. CONCLUSION

We present a Language Controller to align a robot’s physical
motions and verbal utterances during collaborative tasks with
humans. The controller was inspired by analyzing physical
therapist interactions with patients. We identified key prin-
ciples of adaptive pacing, aligned timing, and correlation
between speech complexity and motion pace. These principles
were formalized into control objectives to guide users through
trajectories while modulating speech rate and content.

The Language Controller employed a variable admittance
controller to enable compliant trajectory following. The pace
of speech delivery was modulated via a phase vocoder to
match the speed of motion and paraphrasing was incorporated
through a phrase directed graph traversal in order to align
the length of verbal content with the trajectory. Experiments
with 12 users validated the advantages of our approach over
baseline methods in synchronizing motion and speech.

Directions for future work include expanding the con-
troller’s language capabilities using large pre-trained models,
applying it to diverse assistive tasks in areas like manufac-
turing, where robots work alongside humans in assembly;
healthcare, where robots assist nurses with patient handling;
and space exploration, where astronaut-robot teams assist from
fall recovery and scientific explorations.
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